Capture-mark-recapture methods for abundance estimation

Abundance estimation

Same old equation:

$$\hat{N} = \frac{n}{\hat{p}}$$

- N is abundance (population size)
- n is the number of individuals detected
- \hat{p} is an estimate of detection probability: The probability of detecting an individual

Most methods differ in how they estimate p

INTRODUCTION

Encounter histories

EMOVAL SAMPLING

2 / 14

OVERVIEW

Estimating p

- Set traps in a study area and mark each captured individual
- Repeat the trapping on K occasions
- On each occasion, mark new individuals and record recaptures
- If capture probability is high...
 - You will detect most of the population on the first occasion
 - Most of the captures on subsequent occasions will be recaptures
- And vice versa

n = 5 individuals captured over 3 sampling occasions

	Occasion 1	Occasion 2	Occasion 3	
Animal 1	0	0	1	
Animal 2	1	1	0	
Animal 3	1	1	1	
Animal 4	1	0	0	
Animal 5	0	1	0	

These data tell us about p and hence N. Estimation is usually acheived using maximum likelihood methods.

LINCOLN-PETERSON METHOD

The original method was first used by Pierre-Simon LaPlace to estimate the human population in France.

Later it was used by Lincoln (shown above) and Peterson to estimate fish and wildlife populations

LINCOLN-PETERSON STUDY DESIGN

- There are only 2 capture occasions
- On the first, n₁ animals are captured and marked
- On the second, n_2 animals are captured and m_2 of them are recaptures

Lincoln-Peterson Abundance Estimator	LINCOLN-PETERSON ASSUMPTIONS

How can we use n_1 , n_2 , and m_2 to estimate N?

$$\frac{n_1}{N} = \frac{m_2}{n_2}$$

And so. . .

$$\hat{N} = \frac{n_1 n_2}{m_2}$$

- (1) Population closure
 - No births
 - No deaths
 - No immigration or emigration
- (2) All individuals are assumed to have the same capture probability
- (3) No tag loss or mis-identification

6 / 14

K-sample CMR

Removal sampling

Suppose you remove individuals on each survey

Eventually you should deplete the population

The number of captures you would expect on each occasion:

Occasion	Expected count		
1	pN		
2	p(1-p)N		
3	$p(1-p)^2N$		
4	$p(1-p)^{3}N$		
:	:		
K	$p(1-p)^{K-1}N$		

Introduction	Lincoln-Peterson	Removal sampling	9 / 14	Introduction	LINCOLN-PETERSON	Removal sampling	10 / 14
Example				SUMMARY			

p=0.3, N=100 p=0.8, N=100 25 09 20 New captures New captures \$ 20 ß 0 0 1 2 3 1 2 3 Occasion Occasion

The rate at which the population is depleted tells us about p.

Using more than 2 sampling occasions has many advantages,

including the ability to account for:

• Temporal variation

Behavioral effects

Trap happiness
Trap shyness
Individual heterogeneity
Combinations of the above

Key points

- Capture-recapture methods use information about recapture rates to estimate capture probability and abundance
- More advanced methods can be used to estimate density and vital rates
- Modern field methods use camera traps or DNA sampling techniques to collect non-invasive capture-recapture data

Assignment

Lingering questions

- How do we convert abundance to density?
- What is the area surveyed?

Read Chapter 11

Introduction	LINCOLN-PETERSON	Removal sampling	13 / 14	Introduction	LINCOLN-PETERSON	Removal sampling	14 / 14