Harvest Models

Population Harvesting

OREST, AND ANIMAL RESOURCES

WAYNE M. GETZ AND ROBERT G. HAIGHT

TODAY'S TOPICS

Sustainable harvest and geometric growth

Sustainable harvest and logistic growth

Definition of maximum sustainable yield (MSY)

Limitations of MSY

Additive vs compensatory mortality

Sustainable harvest

HARVEST AND GEOMETRIC GROWTH

A sustainable (and large) harvest is a common objective in game management

Sustainable harvest: A harvest that is balanced by population growth such that $N_{t+1} = N_t \label{eq:sustainable}$

$$N_{t+1} = N_t + N_t r - \underline{H}_t$$

where ${\cal H}_t$ is the number of animals harvested at the end of year t

What value of H_t achieves equilibrium (i.e., $N_{t+1} = N_t$)?

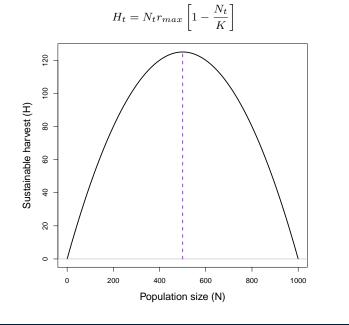
A sustainable harvest in this context is

$$H_t = N_t r$$

$$N_{t+1} = N_t + N_t r_{max} \left[1 - \frac{N_t}{K} \right] - \frac{H_t}{K}$$

Consequently, the sustainbale harvest rate (h) is:

$$h = \frac{H_t}{N_t} = r$$


What value of H_t achieves equilibrium?

Geometric growth Logistic growth Compensatory mortality $5 / 20$	Geometric growth ${ m Logistic \ growth}$ Compensatory mortality $6 \ / \ 20$
SUSTAINABLE HARVEST AND LOGISTIC GROWTH	Example when $K = 1000$ and $r_{max} = 0.1$
$H_t = N_t r_{max} \left[1 - rac{N_t}{K} ight]$ In this case, the sustainable harvest rate (h)	But the set of the se
depends on population size $h_t = \frac{H_t}{N_t} = r_{max} \left[1 - \frac{N_t}{K} \right]$	
	0 200 400 600 800 1000 Population size (N)

Example when K = 1000 and $r_{max} = 0.5$

LOGISTIC GROWTH

• MSY is found when N = K/2

- The actual maximum yield is $H = r_{max}K/4$
- The optimal harvest rate is $h = r_{max}/2$

IS MSY USEFUL IN PRACTICE?

HOTO: STUART GREGORY, GETTY IMAGE

ISSUES

Larkin, P.A. 1977. An epitaph for the concept of maximum sustained yield. Transactions of the American Fisheries Society 106: 1-11.

• Same assumptions as logistic growth model

LOGISTIC GROWTH

- K is constant
- ► No age/sex/individual variation
- No stochasticity
- Ecosystem impacts of reducing a population to half its carrying capacity?
- Evolutionary consequences?

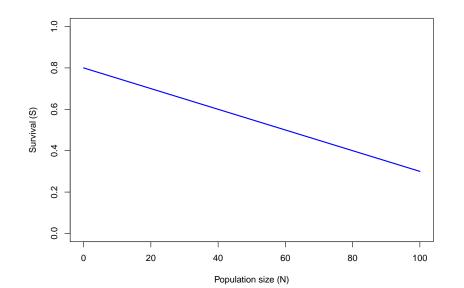
10 / 20

Compensatory mortality example

Additive vs. compensatory mortality

- One possible mechanism giving rise to logistic growth is density-dependence in survival
- For example, if population size is reduced, survival of the remaining individuals might increase
- If harvest is compensated for by improved survival, harvest is a form of **compensatory mortality**
- However, if harvest is not compensated for by improved survival, harvest is a form of **additive mortality**

If harvest mortality is additive, extra caution is needed to ensure that harvest doesn't cause long-term population declines.

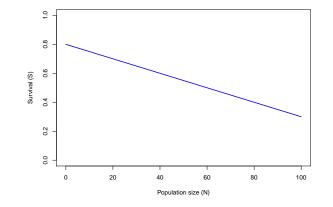

Suppose a population of 100 white-tailed deer is subjected to harvest

Harvest takes place prior to any natural mortality

Natural mortality occurs in a density dependent fashion, such that survival probability (S) declines as N increases.

A simple model is $S = \beta_0 - \beta 1 \times N$

Let's assume $\beta_0=0.8$ and $\beta_1=0.005,$ so $S=0.8-0.005\times N$

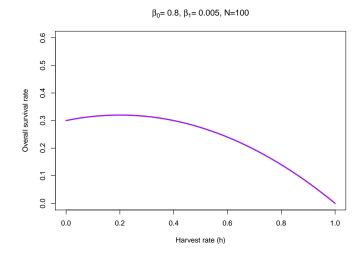

INDIVIDUAL SURVIVAL VS. POPULATION SIZE

$S = 0.8 - 0.005 \times N$

• If 20 individuals are harvested, what is S for remaining individuals?

Compensatory mortality

- How many individuals will remain at the end of the year?
- How many would remain at the end of the year if no hunting occurred?


Compensatory mortality

13 / 20

16 / 20

14 / 20

OVERALL SURVIVAL VS. HARVEST RATE

Conclusion: Because harvest mortality is compensatory, the harvest rate (h) can be as high as 0.2 without negatively impacting overall survival.

Geometric growth	Logistic growth	Compensatory mortality	17 / 20	Geometric growth	Logistic growth	Compensatory mortality	18 / 20
SUMMARY				Assignment			

Key points

- If growth is geometric, sustainable harvest occurs when h = r
- If growth is logisitic, maximum sustainable yield occurs at ${\cal N}=K/2$

The overall survival rate (\bar{S}) is product of survival throughout the

 $\bar{S} = (1-h)(\beta_0 - \beta_1(N-Nh))$

hunting season (1-h) and survial after the hunting season

- If survival is density-dependent, harvest mortality can be compensated for by increased survival of remaining individuals (up to a point)
- If mortality is additive, extra caution is needed because harvest is adding to natural mortality without any compensation
- Managers need to understand population dynamics when setting harvest regulations

Read pages 22–25 in Conroy and Carroll

FEOMETRIC GROWTH

Geometric growth

Logistic growth

Compensatory mortality