Sampling and Estimation

Key concepts

INTRODUCTION

- All models include parameters (e.g., N, r, K, etc...)
- Parameters are almost never known. Why?
 - We usually have to sample
 - Animals are hard to detect
- Good sampling designs yield accurate estimates of unknown parameters

PARAMETERS, ESTIMATES, AND STATISTICS

Parameter

A characteristic of a population

Statistic

A characteristic of a dataset (often used to estimate a parameter)

	Population	Parameter
	parameter	estimate
Population size	N_t	\hat{N}_t
Growth rate	r	\hat{r}
Occurrence probability	ψ	$\hat{\psi}$

HOW DO YOU GET ACCURATE ESTIMATES?

Properties of a good design:

- (1) Clearly defined objective, in terms of:
 - Parameter(s) that will be estimated
 - Population of interest
 - Criteria for reliability (e.g., precision)
 - Practical constraints (e.g., costs)
- (2) Replication
- (3) Randomization
- (4) Controls (when conducting an experiment)

Target population

The population of interest. Should be defined in terms of time and space.

Sampled population

The sampled portion of the population of interest, usually defined in terms of the sample units (such as plots, quadrats, etc.).

Accuracy has two components:

- (1) Bias: The difference between the average estimate and the true parameter
- (2) Variance: The variability of the estimates.

Introduction	Sampling	5 / 13	INTRODUCTION	Sampling	6 / 13
How do we red	UCE VARIANCE?		EFFECT OF SAMP	LE SIZE	
			Suppose we want to and we have enoug	o estimate the height of students h resources to repeat a survey ma	on campus, any times.

Huge sample size

Each point below is an estimate.

The standard deviation of the sampling distribution is called the standard error (SE)

Simple random sampling

Randomization

- All sample units have the same inclusion probability
- Easiest and most reliable method
- But not always cost effective

Introduction	SAMPLING	9 / 13	Introduction	SAMPLING	10 / 13
STANDARD SAMPL	ING DESIGNS		STANDARD SAMP	PLING DESIGNS	

Stratified random sampling

- Useful when study area is characterized by several homogeneous regions
- Regions with higher variability should be sampled more intensively than regions with low variability
- Often more cost effective than simple random sampling

Systematic sampling

- Sample units are selected according to a regular, ordered scheme with the first unit being sampled randomly.
- Easy to implement in the field
- Potentially dangerous because sample unit spacing could coincide with natural spacing of environmental features

SUMMARY

Main points

- We have to estimate model parameters
- Reliable estimates require good sampling design
- Replication reduces variance
- Randomization reduces bias

Introduction	Sampling	13 / 13