
Stochasticity

Today’s topics

1 Introduction

2 Geometric Growth

3 Logistic growth

Random Variables

A random variable is a variable whose value can’t be predicted
with certainty.

Examples?
• Weather
• Our own behavior
• Population size
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Probability distributions

A random variable (X) can be described by a probability
distribution.

There are many types of probability distributions
• Normal (or Gaussian)
• Poisson
• Binomial
• Multinomial
• etc. . .
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Normal (Gaussian) Distribution

X ∼ Normal(µ = 0, σ2 = 1)
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Normal (Gaussian) Distribution
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A purely stochastic model

Nt ∼ Normal(µ = 50, σ2 = 1)
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Two important types of stochasticity

Environmental stochasticity
• Random variation in weather, habitat, etc. . . among years

Demographic stochasticity
• Random variation in the number of births and deaths among

years
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Geometric growth with environmental

stochasticity

Nt+1 = Nt +Ntr +Xt

where

Xt ∼ Normal(0, σ2e)

R code:
r <- 0.1

sigma.e <- 10

for(t in 2:nYears) {
X[t-1] <- rnorm(n=1, mean=0, sd=sigma.e)

N[t] <- N[t-1] + N[t-1]*r + X[t-1]

}
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Example N0 = 100, r = 0.1, µ = 0, σ2e = 100
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Example N0 = 100, r = 0.1, µ = 0, σ2e = 10000
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Geometric growth with demographic

stochasticity

Nt+1 = Nt + Ntrt

where

rt ∼ Normal(r̄, σ2
d)
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Example N0 = 100, r̄ = 0.5, σ2d = 0.01

●
● ● ● ● ●

● ●
●

●
●

●
● ●

●

● ● ● ●
●

●

0 5 10 15 20

0
20

0
40

0
60

0
80

0
10

00

Time

P
op

ul
at

io
n 

si
ze

 (
N

)

Introduction Geometric Growth Logistic growth 13 / 17

Example N0 = 100, r̄ = 0.5, σ2d = 0.25
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Logistic growth with stochastic carrying

capacity

Nt+1 = Nt + Ntrmax(1−Nt/Kt)

where

Kt ∼ Normal(K̄, σ2
e)
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Logistic example, rmax = 0.2, K̄ = 100, σ2e = 400
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Summary

Purely deterministic models are too rigid

Purely stochastic models don’t tell us much

The goal is to develop a mechanistic model that
represents our biological understanding while
allowing for stochasticity
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