TODAY’S TOPICS

Stochasticity
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Figure 1. The population trend of Pelagic rants at Middleton Island. Figure 7. The population trend of black-legged kittiwakes on Middleton
Alaska from 1974 to 2005 (Hatch et al.. unpublished data). Island, Alaska from 1974 to 2005 (Hatch et al., unpublished data).

RANDOM VARIABLES PROBABILITY DISTRIBUTIONS

A random variable (X) can be described by a probability

A random variable is a variable whose value can't be predicted e
distribution.

with certainty.

There are many types of probability distributions

Examples? ® Normal (or Gaussian)
® \Weather ® Poisson
e Our own behavior e Binomial
® Population size e Multinomial
® etc...
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NORMAL (GAUSSIAN) DISTRIBUTION NORMAL (GAUSSIAN) DISTRIBUTION

X ~ Normal(p = 0,0% = 1)
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A PURELY STOCHASTIC MODEL TWO IMPORTANT TYPES OF STOCHASTICITY

N; ~ Normal(u = 50,02 = 1)
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Environmental stochasticity

® Random variation in weather, habitat, etc...among years
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Demographic stochasticity
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® Random variation in the number of births and deaths among
years

Population size (N)
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Time
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GEOMETRIC GROWTH WITH ENVIRONMENTAL EXAMPLE Ny = 100, r = 0.1, =0, o> = 100
STOCHASTICITY
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R code: £
r <- 0.1 g
sigma.e <- 10
for(t in 2:nYears) {
X[t-1] <- rnorm(n=1, mean=0, sd=sigma.e) © 7

N[t] <- N[t-1] + N[t-1]*r + X[t-1] 0 5 10 15 20

Time
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EXAMPLE Ny = 100, 7 = 0.1, g = 0, o2 = 10000 GEOMETRIC GROWTH WITH DEMOGRAPHIC
STOCHASTICITY
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] ri ~ Normal(7, o3)

Time

GEOMETRIC GROWTH / 17 GEOMETRIC GROWTH




ExamMpPLE Ny = 100, r = 0.5, 03
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LOGISTIC GROWTH WITH STOCHASTIC CARRYING

CAPACITY

Niv1 = Ny 4+ Nirppar (1 — Ny /KY)

where

K; ~ Normal(K, o)
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SUMMARY

Purely deterministic models are too rigid
Purely stochastic models don't tell us much

The goal is to develop a mechanistic model that
represents our biological understanding while
allowing for stochasticity
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