Lab 2 – Summary statistics, graphics, and the *t*-test

August 20 & 21, 2018 FANR 6750

Richard Chandler and Bob Cooper University of Georgia

Recap

Last week we covered:

- Vectors
- Data frames
- Indexing
- Importing and exporting data
- Saving and loading workspaces

TODAY'S TOPICS

1 INTRODUCTION

2 GRAPHICS

$\bigcirc t$ TESTS

- Two-sample t test
- Equality of variance test
- Paired *t*-test

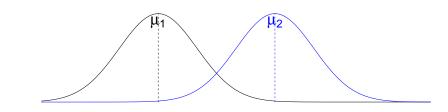
Scenario

We have 2 samples of data and we want to know if they came from population.

The problem is that the true population means (μ_1, μ_1) are unknown.

Under the assumption that the variances of the two populations are equal, the relevant hypotheses are:

- $H_0: \mu_1 = \mu_2$
- $H_A: \mu_1 \neq \mu_2$



Key points

INTRODUCTION

2

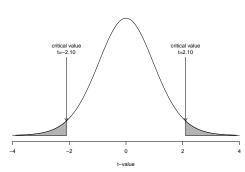
TODAY'S TOPICS

GRAPHICS

If the two sample means $(\bar{y_1}, \bar{y_2})$ are very different and the standard error of the difference in means is small, the *t* statistic will be far from zero.

If the t statistic is more extreme than the critical values, you reject the null hypothesis (H_0) .

t distribution with df=18

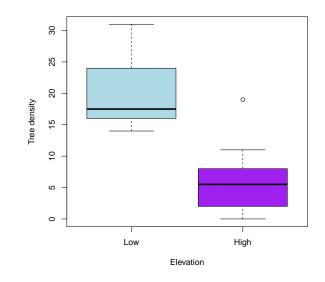


EXERCISE I

- Open R and set the working directory to a convenient location on your computer. Do this using File > Change dir ..., or the setwd function.
- (2) Put the file treedata.csv into your working. directory
- (3) Create a new R script and import treedata.csv. Name your object treedata.
- (4) Using the indexing methods we covered last time to create 2 objects: yL is the tree density data for the first 10 experimental units (low elevation), and yH is the tree density data for the last 10 units (high elevation)
- (5) Compute the mean, variance, and standard deviation of the 2 samples

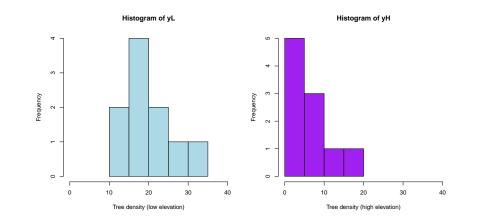
BOXPLOTS

INTRODUCTION



GRAPHICS

xlim=c(0, 40))



GRAPHICS

EXERCISE II

Create the same boxplots and histograms as before, but change the colors of the boxplots and the number of break points in the histograms.

TODAY'S TOPICS

Two-sample t-test with equal variances

GRAPHICS

Step 1: Compute the *t* statistic¹:

$$t = \frac{(\bar{y_L} - \bar{y_H}) - (\mu_L - \mu_H)}{\sqrt{s_p^2/n_L + s_p^2/n_H}}$$

where s_p^2 is the pooled variance:

$$s_p^2 = \frac{(n_L - 1)s_L^2 + (n_H - 1)s_H^2}{n_L + n_H - 2}$$

Step 2: Compare t statistic to critical values

Critical value for 1-tailed test $t_{\alpha=0.05,18} = -1.73 \text{ or } 1.73$

Critical values for 2-tailed test $t_{\alpha=0.05,18} = -2.10$ and 2.10

¹Remember, H_0 states that $\mu_L - \mu_H = 0$.

Graphics	t tests	12 /

1 INTRODUCTION

2 GRAPHICS

3 t TESTS

Do it by hand in \mathbf{R}

Step 1: Compute the *t* statistic:

<pre>mean.L <- mean(yL)</pre>
mean.H <- mean(yH)
s2.L <- var(yL)
s2.H <- var(yH)
<pre>n.L <- length(yL) # length returns the number of elements in a vector</pre>
n.H <- length(yH)
s2.p <- ((n.L-1)*s2.L + (n.H-1)*s2.H)/(n.L+n.H-2)
SE <- $sqrt(s2.p/n.L + s2.p/n.H)$
t.stat <- (mean.L - mean.H) / SE
t.stat

[1] 5.404896

Step 2: Compare *t* statistic to critical values (two-tailed)

<pre>alpha <- 0.05 ## NOTE: qt returns critical values. No need to use "t tables" critical.vals <- qt(c(alpha/2, 1-alpha/2), df=n.L+n.H-2) critical.vals</pre>
[1] -2.100922 2.100922

Let \mathbf{R} do all the work – Option 1

<pre>t.test(yH, yL, var.equal=TRUE,</pre>	
<pre>paired=FALSE, alternative="two.sided")</pre>	
##	
## Two Sample t-test	
##	
## data: yH and yL	
## t = -5.4049, df = 18, p-value = 3.898e-05	
## alternative hypothesis: true difference in means is not equal to	o 0
<pre>## 95 percent confidence interval:</pre>	
## -19.580772 -8.619228	
## sample estimates:	
## mean of x mean of y	
## 6.1 20.2	

Make sure you set var.equal=TRUE . Otherwise, **R** will assume that the variances of the two populations are unequal.

Conclusion: Reject H_0 because 5.4 is more extreme than the critical values.

Introduction	GRAPHICS	t tests	13 / 20	Introduction	Graphics	t tests	14 / 20

Let **R** do all the work – Option 2

<pre>t.test(treeDensity ~ Elevation, data=treedata, var.equal=TRUE,</pre>	
##	
## Two Sample t-test	
##	
<pre>## data: treeDensity by Elevation</pre>	
## t = -5.4049, df = 18, p-value = 3.898e-05	
## alternative hypothesis: true difference in means is not equal to	0
<pre>## 95 percent confidence interval:</pre>	
## -19.580772 -8.619228	
## sample estimates:	
## mean in group High mean in group Low	
## 6.1 20.2	

This second option returns identical results, but it is preferred because the notation is much more similar to the notation used to fit ANOVA models.

TEST EQUALITY OF VARIANCES USING var.test

The standard 2 sample *t*-test assumes that the variances are equal. Here's how you can test this assumption:

```
var.test(yL, yH)
##
## F test to compare two variances
##
## data: yL and yH
## F = 1.1499, num df = 9, denom df = 9, p-value = 0.8386
## alternative hypothesis: true ratio of variances is not equal t
## 95 percent confidence interval:
## 0.2856132 4.6293987
## sample estimates:
## ratio of variances
## 1.149877
```

t tests

SUPPOSE THE SAMPLES ARE PAIRED

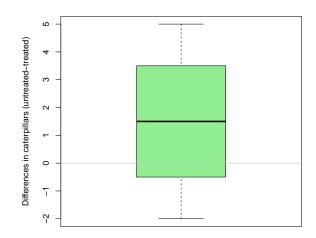
Is the mean of the differences > 0?

The Caterpillar Data from class

```
location <- 1:12
untreated <- c(23,18,29,22,33,20,17,25,27,30,25,27)
treated <- c(19,18,24,23,31,22,16,23,24,26,24,28)</pre>
```

For paired t-tests, we want to know if the mean of the differences differs from zero

dif dif	-	<-	un	trea	ated	-tre	ated						
##	[[1]	4	0	5 -	-1	2 -2	1	2	3	4	1 -	-1
mea	an (di	ff)	##	Est	imat	e of	the	me	an	of	the	differences
##	[1	.]	1.5										



PAIRED *t*-TEST

Recall: Paired *t*-test is the same as a one-sample *t*-test on the differences. The hypothesis *in the Caterpillar example* is one-tailed:

t tests

- $H_0: \mu_d \le 0$
- $H_A: \mu_d > 0$

Step 1. Calculate the standard deviation of the differences.

$$s_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2}$$

Step 2. Calculate the test statistic.

$$t = \frac{\bar{y} - 0}{s_d / \sqrt{n}}$$

Step 3. Compare to critical value.

	INTRODUCTION	
--	--------------	--

t tests

19 / 20

17 / 20

Assignment

Create a script to do the following:

- (1) Do a paired t test on the caterpillar data without using the t.test function. Use only the functions mean, sd, and possibly length.
- (2) Do the paired t test again, but this time using the t.test function.
 - You will need to use the ''paired'' argument when using the t.test function

t tests

18 / 20

- Assume variances are equal
- (3) Do a standard (*unpaired*) two-sample t test using the t.test function.
- (4) Add a comment to the end of your script explain your results. Also include the null and alternative hypotheses for each test.

Upload your script² to ELC before next week's lab.

- The script must be self-contained.
- In other words, you should be able to copy and paste the entire thing into the **R** console, and it should return the correct answers to the questions.

Read pp. 127-131 in "Introductory Statistics with R"

²Or upload an Rmarkdown (.Rmd) file

)	INTRODUCTION	Graphics	t tests	20 / 20