occuTTD.Rd
Fit time-to-detection occupancy models of Garrard et al. (2008, 2013), either single-season or dynamic. Time-to-detection can be modeled with either an exponential or Weibull distribution.
occuTTD(psiformula= ~1, gammaformula = ~ 1, epsilonformula = ~ 1, detformula = ~ 1, data, ttdDist = c("exp", "weibull"), linkPsi = c("logit", "cloglog"), starts, method="BFGS", se=TRUE, engine = c("C", "R"), ...)
psiformula | Right-hand sided formula for the initial probability of occupancy at each site. |
---|---|
gammaformula | Right-hand sided formula for colonization probability. |
epsilonformula | Right-hand sided formula for extinction probability. |
detformula | Right-hand sided formula for mean time-to-detection. |
data |
|
ttdDist | Distribution to use for time-to-detection; either
|
linkPsi | Link function for the occupancy model. Options are
|
starts | optionally, initial values for parameters in the optimization. |
method | Optimization method used by |
se | logical specifying whether or not to compute standard errors. |
engine | Either "C" or "R" to use fast C++ code or native R code during the optimization. |
... | Additional arguments to optim, such as lower and upper bounds |
unmarkedFitOccuTTD object describing model fit.
Estimates site occupancy and detection probability from time-to-detection
(TTD) data, e.g. time to first detection of a particular bird species
during a point count or time-to-detection of a plant species while searching
a quadrat (Garrard et al. 2008). Time-to-detection can be modeled
as an exponential (ttdDist="exp"
) or Weibull (ttdDist="weibull"
)
random variable with rate parameter \(\lambda\) and, for the Weibull,
an additional shape parameter \(k\). Note that occuTTD
puts covariates
on \(\lambda\) and not \(1/\lambda\), i.e., the expected time between events.
In the case where there are no detections before the maximum sample time at
a site (surveyLength
) is reached, we are not sure if the site is
unoccupied or if we just didn't wait long enough for a detection. We therefore
must censor the exponential or Weibull distribution at the maximum survey
length, \(Tmax\). Thus, assuming true site occupancy at site \(i\) is
\(z_i\), an exponential distribution for the TTD \(y_i\), and that
\(d_i = 1\) indicates \(y_i\) is censored (Kery and Royle 2016):
$$d_i = z_i * I(y_i > Tmax_i) + (1 - z_i)$$
and
$$y_i|z_i \sim Exponential(\lambda_i), d_i = 0$$ $$y_i|z_i = Missing, d_i = 1$$
Because in unmarked
values of NA
are typically used to indicate
missing values that were a result of the sampling structure (e.g., lost data),
we indicate a censored \(y_i\) in occuTTD
instead by setting
\(y_i = Tmax_i\) in the y
matrix provided to
unmarkedFrameOccuTTD
. You can provide either a single value of
\(Tmax\) to the surveyLength
argument of unmarkedFrameOccuTTD
,
or provide a matrix, potentially with a unique value of \(Tmax\) for each
value of y
. Note that in the latter case the value of y
that will
be interpreted by occuTTD
as a censored observation (i.e., \(Tmax\))
will differ between observations!
Occupancy and detection can be estimated with only a single survey per site,
unlike a traditional occupancy model that requires at least two replicated
surveys at at least some sites. However, occuTTD
also supports
multiple surveys per site using the model described in Garrard et al. (2013).
Furthermore, multi-season dynamic models are supported, using the same basic
structure as for standard occupancy models (see colext
).
When linkPsi = "cloglog"
, the complimentary log-log link
function is used for \(psi\) instead of the logit link. The cloglog link
relates occupancy probability to the intensity parameter of an underlying
Poisson process (Kery and Royle 2016). Thus, if abundance at a site is
can be modeled as \(N_i ~ Poisson(\lambda_i)\), where
\(log(\lambda_i) = \alpha + \beta*x\), then presence/absence data at the
site can be modeled as \(Z_i ~ Binomial(\psi_i)\) where
\(cloglog(\psi_i) = \alpha + \beta*x\).
Garrard, G.E., Bekessy, S.A., McCarthy, M.A. and Wintle, B.A. 2008. When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology 33: 986-998.
Garrard, G.E., McCarthy, M.A., Williams, N.S., Bekessy, S.A. and Wintle, B.A. 2013. A general model of detectability using species traits. Methods in Ecology and Evolution 4: 45-52.
Kery, Marc, and J. Andrew Royle. 2016. Applied Hierarchical Modeling in Ecology, Volume 1. Academic Press.
Ken Kellner contact@kenkellner.com
if (FALSE) { ### Single season model N <- 500; J <- 1 #Simulate occupancy scovs <- data.frame(elev=c(scale(runif(N, 0,100))), forest=runif(N,0,1), wind=runif(N,0,1)) beta_psi <- c(-0.69, 0.71, -0.5) psi <- plogis(cbind(1, scovs$elev, scovs$forest) %*% beta_psi) z <- rbinom(N, 1, psi) #Simulate detection Tmax <- 10 #Same survey length for all observations beta_lam <- c(-2, -0.2, 0.7) rate <- exp(cbind(1, scovs$elev, scovs$wind) %*% beta_lam) ttd <- rexp(N, rate) ttd[z==0] <- Tmax #Censor at unoccupied sites ttd[ttd>Tmax] <- Tmax #Censor when ttd was greater than survey length #Build unmarkedFrame umf <- unmarkedFrameOccuTTD(y=ttd, surveyLength=Tmax, siteCovs=scovs) #Fit model fit <- occuTTD(psiformula=~elev+forest, detformula=~elev+wind, data=umf) #Predict psi values predict(fit, type='psi', newdata=data.frame(elev=0.5, forest=1)) #Predict lambda values predict(fit, type='det', newdata=data.frame(elev=0.5, wind=0)) #Calculate p, probability species is detected at a site given it is present #for a value of lambda. This is equivalent to eq 4 of Garrard et al. 2008 lam <- predict(fit, type='det', newdata=data.frame(elev=0.5, wind=0))$Predicted pexp(Tmax, lam) #Estimated p for all observations head(getP(fit)) ### Dynamic model N <- 1000; J <- 2; T <- 2 scovs <- data.frame(elev=c(scale(runif(N, 0,100))), forest=runif(N,0,1), wind=runif(N,0,1)) beta_psi <- c(-0.69, 0.71, -0.5) psi <- plogis(cbind(1, scovs$elev, scovs$forest) %*% beta_psi) z <- matrix(NA, N, T) z[,1] <- rbinom(N, 1, psi) #Col/ext process ysc <- data.frame(forest=rep(scovs$forest, each=T), elev=rep(scovs$elev, each=T)) c_b0 <- -0.4; c_b1 <- 0.3 gam <- plogis(c_b0 + c_b1 * scovs$forest) e_b0 <- -0.7; e_b1 <- 0.4 ext <- plogis(e_b0 + e_b1 * scovs$elev) for (i in 1:N){ for (t in 1:(T-1)){ if(z[i,t]==1){ #ext z[i,t+1] <- rbinom(1, 1, (1-ext[i])) } else { #col z[i,t+1] <- rbinom(1,1, gam[i]) } } } #Simulate detection ocovs <- data.frame(obs=rep(c('A','B'),N*T)) Tmax <- 10 beta_lam <- c(-2, -0.2, 0.7) rate <- exp(cbind(1, scovs$elev, scovs$wind) %*% beta_lam) #Add second observer at each site rateB <- exp(cbind(1, scovs$elev, scovs$wind) %*% beta_lam - 0.5) #Across seasons rate2 <- as.numeric(t(cbind(rate, rateB, rate, rateB))) ttd <- rexp(N*T*2, rate2) ttd <- matrix(ttd, nrow=N, byrow=T) ttd[ttd>Tmax] <- Tmax ttd[z[,1]==0,1:2] <- Tmax ttd[z[,2]==0,3:4] <- Tmax umf <- unmarkedFrameOccuTTD(y = ttd, surveyLength = Tmax, siteCovs = scovs, obsCovs=ocovs, yearlySiteCovs=ysc, numPrimary=2) dim(umf@y) #num sites, (num surveys x num primary periods) fit <- occuTTD(psiformula=~elev+forest,detformula=~elev+wind+obs, gammaformula=~forest, epsilonformula=~elev, data=umf,se=T,engine="C") truth <- c(beta_psi, c_b0, c_b1, e_b0, e_b1, beta_lam, -0.5) #Compare to truth cbind(coef(fit), truth) }