posteriorSamples.Rd
Draw samples from the empirical Bayes posterior predictive distribution derived from unmarked models or ranef objects
# S4 method for unmarkedRanef posteriorSamples(object, nsims=100, ...) # S4 method for unmarkedFit posteriorSamples(object, nsims=100, ...)
object | An object inheriting class |
---|---|
nsims | Number of draws to make from the posterior predictive distribution |
... | Other arguments |
unmarkedPostSamples
object containing the draws from the
posterior predictive distribution. The draws are in the @samples
slot.
Ken Kellner contact@kenkellner.com
# Simulate data under N-mixture model set.seed(4564) R <- 20 J <- 5 N <- rpois(R, 10) y <- matrix(NA, R, J) y[] <- rbinom(R*J, N, 0.5) # Fit model umf <- unmarkedFramePCount(y=y) fm <- pcount(~1 ~1, umf, K=50) # Estimates of conditional abundance distribution at each site (re <- ranef(fm))#> Mean Mode 2.5% 97.5% #> [1,] 5.456813 5 4 8 #> [2,] 12.263316 12 10 15 #> [3,] 11.974866 12 10 15 #> [4,] 12.512518 12 10 15 #> [5,] 7.515203 7 6 10 #> [6,] 6.910344 7 5 9 #> [7,] 11.772003 12 10 14 #> [8,] 11.590102 11 9 14 #> [9,] 11.957508 12 10 15 #> [10,] 5.239116 5 4 7 #> [11,] 12.811799 13 10 16 #> [12,] 6.871755 7 5 9 #> [13,] 9.393458 9 7 12 #> [14,] 13.201976 13 11 16 #> [15,] 4.531943 4 3 7 #> [16,] 7.803122 8 6 10 #> [17,] 7.961635 8 6 10 #> [18,] 6.365969 6 5 9 #> [19,] 11.728030 12 9 14 #> [20,] 13.016582 13 11 16#Draw from the posterior predictive distribution (ppd <- posteriorSamples(re, nsims=100))#> Posterior samples from unmarked model #> 20 sites x 1 primary periods x 100 sims #> Showing first 5 sites and first 3 simulations #> To see all samples, use print() #> [,1] [,2] [,3] #> [1,] 8 4 4 #> [2,] 12 10 11 #> [3,] 11 12 10 #> [4,] 15 11 11 #> [5,] 7 9 6