unmarkedFrameMMO.Rd
Organizes count data and experimental design information
from multiple primary periods along with associated covariates. This S4 class
is required by the data argument of multmixOpen
unmarkedFrameMMO(y, siteCovs=NULL, obsCovs=NULL, yearlySiteCovs=NULL, numPrimary, type, primaryPeriod)
y | An MxJT matrix of the repeated count data, where M is the number of sites (i.e., points or transects), J is the number of distance classes and T is the maximum number of primary sampling periods per site |
---|---|
siteCovs | A |
obsCovs | Either a named list of |
yearlySiteCovs | Either a named list of MxT |
numPrimary | Maximum number of observed primary periods for each site |
type | Either "removal" for removal sampling, "double" for standard double observer sampling, or "depDouble" for dependent double observer sampling |
primaryPeriod | An MxJT matrix of integers indicating the primary period of each observation |
unmarkedFrameMMO
is the S4 class that holds data to be passed
to the multmixOpen
model-fitting function.
Options for the detection process (type
) include equal-interval removal
sampling ("removal"
), double observer sampling ("double"
), or
dependent double-observer sampling ("depDouble"
). Note
that unlike the related functions multinomPois
and
gmultmix
, custom functions for the detection process (i.e.,
piFun
s) are not supported. To request additional options contact the author.
When gamma or omega are modeled using year-specific covariates, the covariate data for the final year will be ignored; however, they must be supplied.
If the time gap between primary periods is not constant, an M by T
matrix of integers should be supplied using the primaryPeriod
argument.
an object of class unmarkedFrameMMO
#Generate some data set.seed(123) lambda=4; gamma=0.5; omega=0.8; p=0.5 M <- 100; T <- 5 y <- array(NA, c(M, 3, T)) N <- matrix(NA, M, T) S <- G <- matrix(NA, M, T-1) for(i in 1:M) { N[i,1] <- rpois(1, lambda) y[i,1,1] <- rbinom(1, N[i,1], p) # Observe some Nleft1 <- N[i,1] - y[i,1,1] # Remove them y[i,2,1] <- rbinom(1, Nleft1, p) # ... Nleft2 <- Nleft1 - y[i,2,1] y[i,3,1] <- rbinom(1, Nleft2, p) for(t in 1:(T-1)) { S[i,t] <- rbinom(1, N[i,t], omega) G[i,t] <- rpois(1, gamma) N[i,t+1] <- S[i,t] + G[i,t] y[i,1,t+1] <- rbinom(1, N[i,t+1], p) # Observe some Nleft1 <- N[i,t+1] - y[i,1,t+1] # Remove them y[i,2,t+1] <- rbinom(1, Nleft1, p) # ... Nleft2 <- Nleft1 - y[i,2,t+1] y[i,3,t+1] <- rbinom(1, Nleft2, p) } } y=matrix(y, M) #Create some random covariate data sc <- data.frame(x1=rnorm(100)) #Create unmarked frame umf <- unmarkedFrameMMO(y=y, numPrimary=5, siteCovs=sc, type="removal") summary(umf)#> unmarkedFrame Object #> #> 100 sites #> Maximum number of observations per site: 15 #> Mean number of observations per site: 15 #> Number of primary survey periods: 5 #> Number of secondary survey periods: 3 #> Sites with at least one detection: 100 #> #> Tabulation of y observations: #> 0 1 2 3 4 5 6 #> 621 460 255 104 44 11 5 #> #> Site-level covariates: #> x1 #> Min. :-2.08984 #> 1st Qu.:-0.84632 #> Median :-0.10159 #> Mean :-0.02812 #> 3rd Qu.: 0.72915 #> Max. : 2.69840