Organizes detection, non-detection data for multiple species along with the covariates. This S4 class is required by the data argument of occuMulti

unmarkedFrameOccuMulti(y, siteCovs=NULL, obsCovs=NULL, 
                              maxOrder, mapInfo)

Arguments

y

A list (optionally a named list) of length S where each element is an MxJ matrix of the detection, non-detection data for one species, where M is the number of sites, J is the maximum number of sampling periods per site, and S is the number of species in the analysis.

siteCovs

A data.frame of covariates that vary at the site level. This should have M rows and one column per covariate

obsCovs

Either a named list of data.frames of covariates that vary within sites, or a data.frame with MxJ rows in site-major order.

maxOrder

Optional; specify maximum interaction order. Defaults to number of species (all possible interactions). Reducing this value may speed up creation of unmarked frame if you aren't interested in higher-order interactions.

mapInfo

Currently ignored

Details

unmarkedFrameOccuMulti is the S4 class that holds data to be passed to the occuMulti model-fitting function.

Value

an object of class unmarkedFrameOccuMulti

Author

Ken Kellner contact@kenkellner.com

See also

Examples

# Fake data S <- 3 # number of species M <- 4 # number of sites J <- 3 # number of visits y <- list(matrix(rbinom(M*J,1,0.5),M,J), # species 1 matrix(rbinom(M*J,1,0.5),M,J), # species 2 matrix(rbinom(M*J,1,0.2),M,J)) # species 3 site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B'))) site.covs
#> x1 x2 #> 1 1 A #> 2 2 B #> 3 3 A #> 4 4 B
umf <- unmarkedFrameOccuMulti(y=y, siteCovs=site.covs, obsCovs=NULL) # organize data umf # look at data
#> Data frame representation of unmarkedFrame object. #> Only showing observation matrix for species 1. #> y.1 y.2 y.3 x1 x2 #> 1 1 0 0 1 A #> 2 1 0 0 2 B #> 3 0 1 0 3 A #> 4 0 1 1 4 B
summary(umf) # summarize
#> unmarkedFrame Object #> #> 4 sites #> 3 species: sp1 sp2 sp3 #> Maximum number of observations per site: 3 #> Mean number of observations per site: #> sp1: 3 sp2: 3 sp3: 3 #> Sites with at least one detection: #> sp1: 4 sp2: 4 sp3: 0 #> Tabulation of y observations: #> sp1: #> 0 1 #> 7 5 #> sp2: #> 0 1 #> 5 7 #> sp3: #> 0 #> 12 #> #> Site-level covariates: #> x1 x2 #> Min. :1.00 A:2 #> 1st Qu.:1.75 B:2 #> Median :2.50 #> Mean :2.50 #> 3rd Qu.:3.25 #> Max. :4.00
plot(umf) # visualize
#fm <- occu(~1 ~1, umf) # fit a model